Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments.

نویسندگان

  • Ed Etxeberria
  • Pedro Gonzalez
  • Edurne Baroja-Fernandez
  • Javier Pozueta Romero
چکیده

Fluid phase endocytic uptake of external solutes in plant cells was further substantiated using artificial polystyrene nano-spheres (40 nm) and CdSe/ZnS quantum dots (20 nm). Both types of artificial nano-particles were taken up by sycamore-cultured cells. However, whereas polystyrene nano-spheres were delivered to the central vacuole, CdSe/ZnS nano-dots were sequestered into cytoplasmic vesicular structures. Using dextran-Texas Red (m.w. 3,000; d-TR) as additional marker, confocal micrographs confirmed the distinct topographic distribution of CdSe/ZnS quantum dots within the cell. Initially, d-TR and CdSe/ZnS quantum dots colocalized within cytoplasmic vesicles. After 18 h incubation, d-TR was distinctly localized in the vacuole whereas CdSe/ZnS quantum dots remained sequestered in cytoplasmic membranous compartments. The data provide a first evidence for the rapid distribution of solutes taken up by endocytosis to distinct intracellular compartments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid-Phase Endocytosis in Plant Cells

The uptake of nutrients by plant cells has been traditionally believed to be mediated by membrane-bound carriers. However, the last decade has seen an increase in evidence pointing to the parallel uptake by fluid-phase endocytosis (FPE). Recent advances in plant endocytosis reveal that this is true for heterotrophic cells, whether storage parenchyma, cell suspensions, or nutrient absorbing cell...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

Synthesis and Optical Study of CdZnTe Quantum Dots

The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...

متن کامل

Somatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors

Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant signaling & behavior

دوره 1 4  شماره 

صفحات  -

تاریخ انتشار 2006